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Equation of state of the hard-sphere crystal

C. Ras¢o,*? L. Mederos? and G. Navasclg
1Departamento de Bica Tearica de la Materia Condensada, Universidad Aatmna, Cantoblanco, Madrid E-28049, Spain
2instituto de Ciencia de Materiales, Consejo Superior de Investigaciones fiasfiCantoblanco, Madrid E-28049, Spain
(Received 20 December 1905

An approach to the averaged two-particle distribution function of a crystalline phase is presented. It includes
an indirect check of the merit of the Gaussian approximation for the local density and a way to infer values of
the thermodynamic variables from simulation data. The equation of state and the compressibility of the
hard-sphere fcc crystal is computed from the Tarazona free energy density fung@bpal Rev. A31, 2672
(1985]. They are in excellent agreement with simulation results over the physical range of densities up to
almost close packing. We also include the comparison with the results obtained by two other functional
approaches, which are also excellg®1063-651X96)08706-5

PACS numbds): 64.10+h, 64.30:+t, 61.66—f, 05.70.Ce

two-particle distribution function. This method also allows

us to infer the ideal and the excess contributi¢as defined

in Sec. I) to the equation of state. It also corroborates the
I. INTRODUCTION merit of the Gaussian description of the one-particle distri-

bution function. Finally, but no less important, the method

The density-functional theory applied to nonuniform clas-Suggest an interesting discussion on the averaged correlation
sical fluids has been able to depict a wide range of physicdtetween the particles beyond nearest neighbors. The agree-
properties of Simp|e solid Systems_ |n|t|a||y, it was intendedment of the Tarazona functional predictions with simulation
for developing a theoretical approach that was able to dedata is excellent up to almost close packing. The same can be
scribe both fluid and crystalline phases consistently. Then, iaid for the predictions from MWDA and GELA at least up
was extended to other crystal properties like elasticity and® the densities reported. To test this accordance, we com-
phonon dispersion and to more Comp|ex Systems SUCh ég.]te aISO the Compl’eSSibi”ty Of the HS CI’ySta| and Compare
surfaces and ||qu|d Crysta(see Ref[l] for a recent review it with that of simulation, f|nd|ng an excellent agreement.
on this matter. Moreover, we also work out the ideal and excess contribu-

It is well known the crucial role of hard spheréd4S) as tions to the pressure and the compressibility and compare
the usual reference system of more realistic systems that irfach one with those corresponding to simulation data. Again,
clude attractive interactions. Accordingly, a considerable efthe accordance is quite good. Note that the evaluation of the
fort has been done to develop free energy functionals deequation of state by MWDA have some problems at high
scribing nonuniform HS systems and, at present, there exi§tensities as pointed out by Tejeeoal. [3].
quite good functional approaches for these SystEtﬂ]sRe_ . In the next Sec“on., we br|eﬂy resume the Tarazona fUnC'
cently, Dentoret al.[2] and Tejercet al. [3] have analyzed tional (TF) together with MWDA and GELA. In Sec. lll we
the equation of state of a HS crystal obtained from the modiPresent the mentioned discussionggf). The results and a
fied weighted-density approximatigMWDA ) [4] and from discussion of them are presented in Sec. IV. The conclusions
the generalized effective liquid approximati6BELA) [5], ~ are exposed in Sec. V.
respectively. Their analysis include densities well inside the
stable solid phase. This is especially relevant in connection
with the solid-solid transition recently reported by Bolhius
and Frenke[6] in systems of HS with a short-ranged attrac-  Density-functional theoriegl] are based on a variational
tive interaction(we have learned that Stell and collaboratorsprinciple[10] which allows us to propose approximations to
had already predicted these kind of transitions in the 1970the Helmholtz free energy. The variational principle estab-
[7]). It happens that, for sufficiently short-ranged attractionslishes that for a given interacting potential, fixed external
this transition occurs at very high densities, near close packsotential, and mean density, the Helmholtz free energy
ing. To describe this kind of phenomena, the theoretical apF[p(r)], as a functional of the one-particle density), has a
proach for the reference HS system should give a reasonabtainimum value at the equilibrium density. The free energy
equation of state over all the physical density range, evefunctional is usually written as
proximal to close packing. Thus, in this paper, we evaluate
the equation of state of a face-centered-cufic) HS crystal
at densities up to almost close packing using the Tarazona
functional approach8,9]. What it is more important is to
compare the functional predictions with simulations resultswhere F;y is the ideal contribution to the Helmholtz free
To do it, we develop a method to obtain thermodynamicenergy of a nonuniform system. Its functional form is exactly
information from simulation data aj(r), the average of the given by

Il. FUNCTIONAL APPROXIMATIONS

Flp(r)]1=Figlp(r)]1+Fedp(r)], 1)

1063-651X/96/58)/56986)/$10.00 53 5698 © 1996 The American Physical Society



53 EQUATION OF STATE OF THE HARD-SPHERE CRYSTAL 5699

whereR is the vector position of the crystal lattice ands
IBFid[P(r)]:f drp(r){In[A3p(r)]-1}, (2)  the Gaussian width parameter. With this density parametri-
zation, the variational principle reduces to finding the value
where A is the thermal de Broglie wavelength and of « that minimizes the free energy functional at each mean
B=1kgT. The second term ofl), F,,, called free energy density. Several attempts trying to improve the parametriza-
excess, arises from the interacting potential between pation of the one-particle density have shown the goodness of
ticles. Several accurate approximations have been proposéie Gaussian ongll]. On the other hand, simulations have
for the free energy excess. These are based on a mapping sifown that deviations from Gaussian form are only signifi-
the thermodynamic properties of the nonuniform systemsant at low densities but only at the tails of the distribution
onto those of a uniform fluid at some effective density[12]. For those reasons, the Gaussian parametrization seems
(weighted density Tarazona[8,9] proposes the following to be an excellent description of the one-particle density of

expression for the free energy excess of the HS solid: the HS crystal over all ranges of physical densities. We shall
give another evidence based on Monte CAMC) simula-
_ — tions[13-17.
Fex[p(r)]—f drp(r)A¥edp(r)), ©) The equation of state for the HS solid is obtained as fol-

) ) lows. After the minimization process we obtain the free en-
whereAW,(p) is the free energy excess per particle of thegrgy per particlef(p) = f(p,a(p)) at each mean density.
uniform system at density and the weighted density, i Notice thate is, after the minimization, a function of the

given by mean densityp. Then, at fixed temperature, the pressure is
given by
p(r)=f dr'p(r")w(|r—r"[;p(r)). 4
gP_ i) o
The functionw(r), in the integral equation that definpsis P P ap

specified by requiring that the direct correlation function

c(r) obtained from the free energy functional matches thaBecause the standard division of the Helmholtz free energy
of the HS liquid in the uniform limit. In the MWDA, Denton (1) into the ideal contribution and the excess one, it follows
and Ashcroft use the same mapping idea. However, they préhe equivalent for the free energy per particle, namely,
pose a global map of the free energy excess onto the frele= fig+ fex. Therefore, the equation of stat®) can be for-

energy of a unique uniform fluif#,2]: mally split into two terms:
Fex[p(r)]:NA\Pex(ﬁa (5) ﬁpid :Bp r?fid(p) (10)
where the weighted densigy is given by P ap
— , , S BPex_ dfex(p)
p—derp(r)f dr’p(r'yw(|r—r’|[;p). (6) p =PBp ap (13)

In the GELA, Lustko and Baus use again a global map butwhere P=P,4+ P,. Following Dentonet al, we call Pjy
the weighted densitjor effective density, p, is given by the  and P, “ideal-gas pressure” and “excess pressure,” re-

structural mapping5]: spectively. Notice thal;q is not the usual ideal gas pressure,
i.e., that which gives the ideal compressibility factor. In ad-

f drp(r)f dr'p(r')e(jr=r'l:p) dition to the different functional approach used by Denton

et al. for the Helmholtz free energy excess, these authors

approximate the ideal free energy per particle by
= [ aro) [ arroeeriomn, @ ]
L) r3inA) -2, (12
T 2

3
ﬁfid(a)=§ In

wherec is the direct correlation function.

An important advantage of the two latter approaches is
that they require less Computationa| effort. However, On|y\NhiCh is exact in the limit of nonoverlapping Gaussians. ltis
the TF is a true functional approach in the sense that it is nok very good approximation over all density ranges of the HS
restricted to macroscopically homogeneous systems, as t/§@lid. However, we use the exact functional expresg®ito
present case of the HS crystal. For more technical details, th@btain the TF ideal contribution.
reader is referred to Ref$§9], [4], [5] in relation to TF, An important and direct test for the equation of state is its
MWDA, and GELA, respectively, and to Refl] for an  capacity to predict the isothermal compressibility of the HS
extensive discussion of these and other functional approxicrystal. This is given by
mations.

The one-particle densityp(r), is usually assumed to be KT dBP(p)]* 13
described by a sum of normalized Gaussians: PEBIXT= ap ! (13
3/2
_[ % —a(r—R)2 which, extending the above formal division into an ideal part
p(r) > e , 8) .
T R and an excess part, can be written as
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BPig(p)] 7t respond to the number of neighbors at distaRgéccording
T} : (14)  to a lattice without vacancigs

The crucial point is to realize that if the spherical average
&ﬂpex(p)}l of p@(r,r"), which definesj(r), is done on the product of

PkBTXid:{

pkBTXexz{ , (15  two sums of Gaussiang(r)p(r'), we obtain precisely all the
P peaks ofg(r) except the first one. In effect, from the defini-
with tion of this average:
E:i+i. (16) ao(rlz):ﬁ J dQuJ drap(ro)p(ra), (22
X Xid Xex aXe

it is straightforward to obtain
I1l. AVERAGE OF THE TWO-PARTICLE DISTRIBUTION

FUNCTION

Go(n)=2, Go'(r), r=0, (23
The averaged two-particle distributiog(r), is defined as 1=0
1 with
9(rip)= 47V p? f dlef drop?(ry,rp), (17 1 o \ 12 )
()= — (—) 2ae” (@27 (24)
whereV is the volume,p®(r,,r,) the two-particle density 4mp \ 27
function, and dQ,, the differential solid angle aperture and
aroundr 1,. In the uniform limit Eq.(17) reduces to the well
known radial distribution function. MC results for this func- 1 o \ V2 e (@(r=R)? 4 o= (al)(r+R)?
tion were parametrized originally by Wefi&3] with the fol- §8>(r): - <_) i
lowing analytical expression: 4mp \2m Rir (25
9(r)=0, Osr=1 (19
1 o |12 e—(a/Z)(r—Ri)2
and N d7p (277) ni Rir , 1=L
_ (26)
g9(n=2,9"r), r=1, (19 . .
=1 We have dropped the second exponential in the expression

(25) as its contribution to each peak is, at most, 20 orders of
magnitude smaller than the first exponentfal the current
values of the Gaussian paramedgr The first peak, Eq24),
IY(r)== e~ [Wa(r—r)12=[Wy(r—r]* (20) of go(r) does not appear ig(r) because the exclusion of the
r self-interaction. The second one, E6) for i=1, differs
from the first one, Eq(20), of g(r). However, identifying
a2 with W?, all the remaining peaks are exactly the same

W2)1’2 o [W(r—Rp)12 both ing(r) and ingy(r).
— n—

with

and

1

'd“)(r)=—(

- i=2, (21) The identification of peaks ig(r) with those ingy(r) has

Rir ' several interesting consequences. The immediately obvious
. . . . _ one is that the whole two-body correlation between particles
wheren; is the number of [attice sites at distarReandA is  payond nearest neighbors is already included in the product
determined by the virial theorem. The parameteysWy, p(r)p(r"). This point has been suggested and extensively dis-
W,, andW are elaborated analytic functions of the density . ,sseq by two of us in relation with the perturbation

Fhat give a good fi_tting to res_ults pf MC s_imulati(Jdistances weighted density approximatig®WDA) for simple systems
in all above equations are given in HS diameter unitSese it attractive interaction potentiald8,19 and it is con-

functions were refined successivgbA—1@. The parameters  firmeq in the present discussion. We have proposed that most
provided by Choiet al.[17] overcome those of previous au-  the correlation of the two-particle distribution function,
thors giving an accurate description of the MC results. The

maximum root mean square deviationggf) from MC data p P (r,r")=p(r)p(rHg(r,r'), (27
computed over the distance rangeup to 3.3 is 0.17 at the
highest density. It quickly decreases to less than 0.06 ds already described by the mentioned product. Thsy )
packing fractions lower tham=0.65. could be basically approximated by a step function to ex-
Here, the interesting point is the functional form used toclude the self-interaction. Instead, we went further and
fit the MC data. The functiom(r) is written as a sum of mappedg(r,r’) into a homogeneous fluid at a very low ef-
peaks corresponding to successive shells of neighbors. THective density determined by the compressibility equation.
first peak, Eq(20), has a characteristic form but all the rest, This proved to be an excellent criterium to determine the
Eg. (21), have exactly the same functional form. These latteperturbation contribution to the free enerdg].
peaks only differ from each other on the distances where On the other hand, the identification of peaks also con-
they are locatedR;, and on their normalizations which cor- firms the goodness of the Gaussian parametrization for the

ko
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FIG. 1. Logarithm of the Gaussian width parametevs pack- FIG. 2. Logarithm of the equation of staBpkgT vs packing

ing fraction 5. Solid curve inferred, in this paper, from simulation fraction 7. Curves and symbols as in Fig. 1.
data of Choiet al. Solid squares inferred by Dentagt al. from

simulation data of Young and Alder. The dashed curve is the TRjansities as it was already known. At high densities both TF
prediction. Solid triangles and open triangles are the results fronénd GELA predict close values for. The MWDA gives the
GELA and MWDA, respectively, obtained by Tejeet al. best predictions except at the lowest densities. Figure 2
. . . shows the equation of state predicted by TF, MWDA, and
one-particle density. Moreover, it suggests that from thesg) A together with simulation results. At low densitieee
theo_ret!cal minimization process of the free_en_ergy one caliqq Fig. 3, the GELA pressure is slightly above the simu-
obtain information on the crystal average distribution func-4;ion pressure while TF and MWDA pressures have lower
tion g(r). (A work along this line is in progressHere, we 5165 All of them improve their agreement with simulation
explore the other way: from MC daféhe parameteW in 55 the pressure increases. At the highest density where we
(21)] we obtain the corresponding Gaussian width paramet§ e performed calculations, the TF pressure differs from the
a of the "MC Gaussian one-particle density.” Then, we are gimjation one in less than 0.3%. In Fig. 4, we show the two
able to compute the MC ideal contribution to the free energy ¢ ntribytions to the pressure, ideal and excess, obtained from

Fiq., throughout the exact functional form E@). The MC  1r "MwDA, and GELA in comparison with those inferred
free energy excess is now immediately obtained and so are

the ideal and the excess contributions of the pressure and the
compressibility. Notice that the excellent fitting of Choi

et al. allows us to evaluate analytically all these thermody- RO pr T ]
namics properties over the density range up to almost close N ]
packing. In Fig. 1, fore, we show some of these results in 18 |- ',:"A —
comparison with those inferred by Dentet al. [2] from i / ]
Young and Aldef20] simulation data. The fair agreement is 16 & .
a sign of the consistency of the different MC data. In any i :
case, the treatment of MC data we have followed is much = - .
more powerful as it gives a continuous expression of the ¥ 14~ ]
thermodynamic variables, as a function of density, up to al- QU r ]
most close packing. E 12 - —
IV. RESULTS AND DISCUSSION 10 - ]

Figure 1 shows the logarithm of the Gaussian parameter - .
inferred by us from Choet al. MC simulations[17] and by 8 '_....l....l....I....l....l...._'

Denton et al. [2] from Young and Alder MC simulations
[20]. The predictions of TF, MWDA, and GELA are also
displayed.(MWDA data in all figures are those obtained by n

Tejeroet al. which we assume free of possible convergence

problems) TF predicts a systematic overestimation of the

Gaussian width parameter but always in fair agreement FIG. 3. Equation of stat®/pkgT vs packing fractiony at low
with simulation results. GELA predictions are better at low densities. Curves and symbols as in Fig. 1.

0.45 05 055 0.6 0.65 0.7 0.75
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100 e sure data to obtain the compressibility via E3). Once
more, the agreement is quite good. We do not have accurate
enough data of GELA and MWDA to obtain the compress-

80 — — ibility properly. It exhibits unphysical oscillations which,
i ] most probably, are due to roundoff effects of pressure data.
= g For completeness, we present in inset of Fig. 5 the inverse of
60 N 7] the ideal and excess compressibilities. The agreement with
B L ] simulation is good.
% Y ] The splitting of the pressure into those parts is quite con-
~ i | venient for all the above discussion. However, we are in-
A o . clined to think that there is no physical meaning in the ideal
20 L ] and the excess pressures, such as they are defined by Egs.
- . (10) and(11).
— AADD -
L Excess |
0 AAAALLLLLLAAAL0A0020002 —
—..—./.T—.“..I....I....I....I....— V. CONCLUSIONS
045 05 055 0.6 065 0.7 0.75 In this paper, we have presented two different contribu-
n tions. One concerns the method used to handle MC data of
theg(r) and the other concerns the accuracy of the equation
of state computed with functional approaches.
FIG. 4. Equation of stat®/pkgT vs packing fractiory. Curves We have proposed a method, using MC dataf), to
and symbols as in Fig. 1. determine the rms displacement of a particle from its equi-

librium lattice site[i.e., the parametew if p(r) is approxi-
from simulation data. TF and GELA show an excellentmated by a sum of Gaussidnhis should work perfectly
agreement with simulation results. The MWDA results arefor peaks ofg(r) at distances where the two-particle distri-
also quite good. Notice that the good theoretical predictiondution function is already given by the prodygt)p(r’). In
for the o parameter(Fig. 1) will necessarily mean compa- practice, it is possible to deduce already the rms displace-
rable good predictions for the ideal press(fFay. 4) because ment (or parameter) from the second peak @(r). This
Eq. (2) is exact. However, due to the functional approxima-procedure should be consistent with a direct determination of
tions proposed for the excess free endi@yfor the total free  the rms displacement from MC configurations. Assuming the
energy the theoretical excess pressijoe the total pressuje  Gaussian parametrization fp(r), an accurate fitting of(r)
must be also compared with simulation data. This is evemllows us to determine the parameteas a function of the
more important at high densities where a significant error irdensity. From this, the ideal pressure is straightforwardly
the excess contribution would not have appreciable effectsbtained via the exact expressi@). From the total and the
on the total pressure. Figure 5 shows the compressibility pradeal pressures, the excess pressure follows immediately.
dicted by TF together with that obtained from simulation. As a consequence of the analytical fitting of MC data
We have used the standard cubic spline treatment of the prefor g(r), it can be deduced that beyond the nearest neighbors
the two-particle correlation function is practically given by
the productp(r)p(r’), i.e.,g(r,r')~1. We are not aware that
this quite interesting and important result was previously
Ideal mentioned by other authors.
The other aim of this paper has been to show the excellent
600 behavior of the equation of state of the fcc HS solid com-
puted with functional approaches. They agree with simula-
tion results up to almost close packing. This remarkable be-
havior is extended to the contributions to the pressure,
namely, the ideal and the excess pressures, and to the com-
Excess pressibility and their ideal and excess parts. They all are in

\ 0
§ ' 07 notable agreement with simulation up to almost close pack-

ing

A 900 |-
0.03 L °

0.02 300 -

PkeTxr

0.01 - " .
Finally, we want to remark that functional approaches

provide a reliable reference HS system for perturbation theo-
ries, especially at high densities. This makes them particu-
larly suitable for describing the solid-solid isostructural tran-
sition of simple systems with extremely short-ranged
attractive potentialf6]. We have applied the PWDJL.8,19
n mentioned above to an attractive square W21l and to HS
plus Yukawa attractive tai[22]. Precisely, the PWDA is
based, among other things, on two of the points explored
FIG. 5. pkgTxt Vs packing fractions. Inset: 1pkgTyr vs  here: the goodness of the TF, even at high densities, for
packing fractions. Curves as in Fig. 1. describing HS and the accuracy of the prodpictp(r’) for
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describing the correlation between particles beyond nearest
neighbors. Note that after Tejeat al. discussion on the nu-
merical problems at high densities of the MWDA, results
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