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An approach to the averaged two-particle distribution function of a crystalline phase is presented. It includes
an indirect check of the merit of the Gaussian approximation for the local density and a way to infer values of
the thermodynamic variables from simulation data. The equation of state and the compressibility of the
hard-sphere fcc crystal is computed from the Tarazona free energy density functional@Phys. Rev. A31, 2672
~1985!#. They are in excellent agreement with simulation results over the physical range of densities up to
almost close packing. We also include the comparison with the results obtained by two other functional
approaches, which are also excellent.@S1063-651X~96!08706-5#

PACS number~s!: 64.10.1h, 64.30.1t, 61.66.2f, 05.70.Ce

I. INTRODUCTION

The density-functional theory applied to nonuniform clas-
sical fluids has been able to depict a wide range of physical
properties of simple solid systems. Initially, it was intended
for developing a theoretical approach that was able to de-
scribe both fluid and crystalline phases consistently. Then, it
was extended to other crystal properties like elasticity and
phonon dispersion and to more complex systems such as
surfaces and liquid crystals~see Ref.@1# for a recent review
on this matter!.

It is well known the crucial role of hard spheres~HS! as
the usual reference system of more realistic systems that in-
clude attractive interactions. Accordingly, a considerable ef-
fort has been done to develop free energy functionals de-
scribing nonuniform HS systems and, at present, there exist
quite good functional approaches for these systems@1#. Re-
cently, Dentonet al. @2# and Tejeroet al. @3# have analyzed
the equation of state of a HS crystal obtained from the modi-
fied weighted-density approximation~MWDA ! @4# and from
the generalized effective liquid approximation~GELA! @5#,
respectively. Their analysis include densities well inside the
stable solid phase. This is especially relevant in connection
with the solid-solid transition recently reported by Bolhius
and Frenkel@6# in systems of HS with a short-ranged attrac-
tive interaction~we have learned that Stell and collaborators
had already predicted these kind of transitions in the 1970s
@7#!. It happens that, for sufficiently short-ranged attractions,
this transition occurs at very high densities, near close pack-
ing. To describe this kind of phenomena, the theoretical ap-
proach for the reference HS system should give a reasonable
equation of state over all the physical density range, even
proximal to close packing. Thus, in this paper, we evaluate
the equation of state of a face-centered-cubic~fcc! HS crystal
at densities up to almost close packing using the Tarazona
functional approach@8,9#. What it is more important is to
compare the functional predictions with simulations results.
To do it, we develop a method to obtain thermodynamic
information from simulation data ofg̃(r ), the average of the

two-particle distribution function. This method also allows
us to infer the ideal and the excess contributions~as defined
in Sec. II! to the equation of state. It also corroborates the
merit of the Gaussian description of the one-particle distri-
bution function. Finally, but no less important, the method
suggest an interesting discussion on the averaged correlation
between the particles beyond nearest neighbors. The agree-
ment of the Tarazona functional predictions with simulation
data is excellent up to almost close packing. The same can be
said for the predictions from MWDA and GELA at least up
to the densities reported. To test this accordance, we com-
pute also the compressibility of the HS crystal and compare
it with that of simulation, finding an excellent agreement.
Moreover, we also work out the ideal and excess contribu-
tions to the pressure and the compressibility and compare
each one with those corresponding to simulation data. Again,
the accordance is quite good. Note that the evaluation of the
equation of state by MWDA have some problems at high
densities as pointed out by Tejeroet al. @3#.

In the next section, we briefly resume the Tarazona func-
tional ~TF! together with MWDA and GELA. In Sec. III we
present the mentioned discussion ofg̃(r ). The results and a
discussion of them are presented in Sec. IV. The conclusions
are exposed in Sec. V.

II. FUNCTIONAL APPROXIMATIONS

Density-functional theories@1# are based on a variational
principle @10# which allows us to propose approximations to
the Helmholtz free energy. The variational principle estab-
lishes that for a given interacting potential, fixed external
potential, and mean density, the Helmholtz free energy
F@r~r !#, as a functional of the one-particle densityr~r !, has a
minimum value at the equilibrium density. The free energy
functional is usually written as

F@r~r !#5Fid@r~r !#1Fex@r~r !#, ~1!

where Fid is the ideal contribution to the Helmholtz free
energy of a nonuniform system. Its functional form is exactly
given by
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bFid@r~r !#5E drr~r !$ ln@L3r~r !#21%, ~2!

where L is the thermal de Broglie wavelength and
b51/kBT. The second term of~1!, Fex , called free energy
excess, arises from the interacting potential between par-
ticles. Several accurate approximations have been proposed
for the free energy excess. These are based on a mapping of
the thermodynamic properties of the nonuniform systems
onto those of a uniform fluid at some effective density
~weighted density!. Tarazona@8,9# proposes the following
expression for the free energy excess of the HS solid:

Fex@r~r !#5E drr~r !DCex„r̄~r !…, ~3!

whereDCex(r) is the free energy excess per particle of the
uniform system at densityr and the weighted density,r̄, is
given by

r̄~r !5E dr 8r~r 8!w„ur2r 8u; r̄~r !…. ~4!

The functionw(r ), in the integral equation that definesr̄, is
specified by requiring that the direct correlation function
c(r ) obtained from the free energy functional matches that
of the HS liquid in the uniform limit. In the MWDA, Denton
and Ashcroft use the same mapping idea. However, they pro-
pose a global map of the free energy excess onto the free
energy of a unique uniform fluid@4,2#:

Fex@r~r !#5NDCex~ r̄ !, ~5!

where the weighted densityr̄ is given by

r̄5
1

N E drr~r !E dr 8r~r 8!w~ ur2r 8u; r̄ !. ~6!

In the GELA, Lustko and Baus use again a global map but
the weighted density~or effective density!, r̄, is given by the
structural mapping@5#:

E drr~r !E dr 8r~r 8!c~ ur2r 8u; r̄ !

5E drr~r !E dr 8r~r 8!c„r ,r 8;r~r !…, ~7!

wherec is the direct correlation function.
An important advantage of the two latter approaches is

that they require less computational effort. However, only
the TF is a true functional approach in the sense that it is not
restricted to macroscopically homogeneous systems, as the
present case of the HS crystal. For more technical details, the
reader is referred to Refs.@9#, @4#, @5# in relation to TF,
MWDA, and GELA, respectively, and to Ref.@1# for an
extensive discussion of these and other functional approxi-
mations.

The one-particle density,r~r !, is usually assumed to be
described by a sum of normalized Gaussians:

r~r !5S a

p D 3/2(
R

e2a~r2R!2, ~8!

whereR is the vector position of the crystal lattice anda is
the Gaussian width parameter. With this density parametri-
zation, the variational principle reduces to finding the value
of a that minimizes the free energy functional at each mean
density. Several attempts trying to improve the parametriza-
tion of the one-particle density have shown the goodness of
the Gaussian one@11#. On the other hand, simulations have
shown that deviations from Gaussian form are only signifi-
cant at low densities but only at the tails of the distribution
@12#. For those reasons, the Gaussian parametrization seems
to be an excellent description of the one-particle density of
the HS crystal over all ranges of physical densities. We shall
give another evidence based on Monte Carlo~MC! simula-
tions @13–17#.

The equation of state for the HS solid is obtained as fol-
lows. After the minimization process we obtain the free en-
ergy per particlef (r)5 f „r,a~r!… at each mean densityr.
Notice thata is, after the minimization, a function of the
mean densityr. Then, at fixed temperature, the pressure is
given by

bP

r
5br

] f ~r!

]r
. ~9!

Because the standard division of the Helmholtz free energy
~1! into the ideal contribution and the excess one, it follows
the equivalent for the free energy per particle, namely,
f5 f id1 f ex . Therefore, the equation of state~9! can be for-
mally split into two terms:

bPid

r
5br

] f id~r!

]r
, ~10!

bPex

r
5br

] f ex~r!

]r
, ~11!

whereP5Pid1Pex . Following Dentonet al., we call Pid
and Pex ‘‘ideal-gas pressure’’ and ‘‘excess pressure,’’ re-
spectively. Notice thatPid is not the usual ideal gas pressure,
i.e., that which gives the ideal compressibility factor. In ad-
dition to the different functional approach used by Denton
et al. for the Helmholtz free energy excess, these authors
approximate the ideal free energy per particle by

b f id~a!5
3

2
lnS a

p D13 ln~L!2
5

2
, ~12!

which is exact in the limit of nonoverlapping Gaussians. It is
a very good approximation over all density ranges of the HS
solid. However, we use the exact functional expression~2! to
obtain the TF ideal contribution.

An important and direct test for the equation of state is its
capacity to predict the isothermal compressibility of the HS
crystal. This is given by

rkBTxT5F]bP~r!

]r G21

, ~13!

which, extending the above formal division into an ideal part
and an excess part, can be written as
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rkBTx id5F]bPid~r!

]r G21

, ~14!

rkBTxex5F]bPex~r!

]r G21

, ~15!

with

1

x
5

1

x id
1

1

xex
. ~16!

III. AVERAGE OF THE TWO-PARTICLE DISTRIBUTION
FUNCTION

The averaged two-particle distribution,g̃(r ), is defined as

g̃~r 12!5
1

4pVr2 E dV12E dr2r
~2!~r1 ,r2!, ~17!

whereV is the volume,r~2!~r1,r2! the two-particle density
function, and dV12 the differential solid angle aperture
aroundr12. In the uniform limit Eq.~17! reduces to the well
known radial distribution function. MC results for this func-
tion were parametrized originally by Weis@13# with the fol-
lowing analytical expression:

g̃~r !50, 0<r<1 ~18!

and

g̃~r !5(
i>1

g̃~ i !~r !, r>1, ~19!

with

g̃~1!~r !5
A

r
e2@W1~r2r1!#22@W2~r2r1!#4 ~20!

and

g̃~ i !~r !5
1

4pr SW2

p D 1/2ni e2@W~r2Ri !#
2

Rir
, i>2, ~21!

whereni is the number of lattice sites at distanceRi andA is
determined by the virial theorem. The parametersr 1 , W1 ,
W2 , andW are elaborated analytic functions of the density
that give a good fitting to results of MC simulation~distances
in all above equations are given in HS diameter units!. These
functions were refined successively@14–16#. The parameters
provided by Choiet al. @17# overcome those of previous au-
thors giving an accurate description of the MC results. The
maximum root mean square deviation ofg̃(r ) from MC data
computed over the distance range~r up to 3.3! is 0.17 at the
highest density. It quickly decreases to less than 0.06 at
packing fractions lower thanh50.65.

Here, the interesting point is the functional form used to
fit the MC data. The functiong̃(r ) is written as a sum of
peaks corresponding to successive shells of neighbors. The
first peak, Eq.~20!, has a characteristic form but all the rest,
Eq. ~21!, have exactly the same functional form. These latter
peaks only differ from each other on the distances where
they are located,Ri , and on their normalizations which cor-

respond to the number of neighbors at distanceRi ~according
to a lattice without vacancies!.

The crucial point is to realize that if the spherical average
of r~2!~r ,r 8!, which definesg̃(r ), is done on the product of
two sums of Gaussians,r~r !r~r 8!, we obtain precisely all the
peaks ofg̃(r ) except the first one. In effect, from the defini-
tion of this average:

g̃0~r 12!5
1

4pVr2 E dV12E dr2r~r1!r~r2!, ~22!

it is straightforward to obtain

g̃0~r !5(
i>0

g̃0
~ i !~r !, r>0, ~23!

with

g̃0
~0!~r !5

1

4pr S a

2p D 1/22ae2~a/2r !2, ~24!

and

g̃0
~ i !~r !5

1

4pr S a

2p D 1/2ni e2~a/2!~r2Ri !
2
1e2~a/2!~r1Ri !

2

Rir
~25!

5
1

4pr S a

2p D 1/2ni e2~a/2!~r2Ri !
2

Rir
, i>1.

~26!

We have dropped the second exponential in the expression
~25! as its contribution to each peak is, at most, 20 orders of
magnitude smaller than the first exponential~for the current
values of the Gaussian parametera!. The first peak, Eq.~24!,
of g̃0(r ) does not appear ing̃(r ) because the exclusion of the
self-interaction. The second one, Eq.~26! for i51, differs
from the first one, Eq.~20!, of g̃(r ). However, identifying
a/2 with W2, all the remaining peaks are exactly the same
both in g̃(r ) and in g̃0(r ).

The identification of peaks ing̃(r ) with those ing̃0(r ) has
several interesting consequences. The immediately obvious
one is that the whole two-body correlation between particles
beyond nearest neighbors is already included in the product
r~r !r~r 8!. This point has been suggested and extensively dis-
cussed by two of us in relation with the perturbation
weighted density approximation~PWDA! for simple systems
with attractive interaction potentials@18,19# and it is con-
firmed in the present discussion. We have proposed that most
of the correlation of the two-particle distribution function,

r~2!~r ,r 8![r~r !r~r 8!g~r ,r 8!, ~27!

is already described by the mentioned product. Thus,g~r ,r 8!
could be basically approximated by a step function to ex-
clude the self-interaction. Instead, we went further and
mappedg~r ,r 8! into a homogeneous fluid at a very low ef-
fective density determined by the compressibility equation.
This proved to be an excellent criterium to determine the
perturbation contribution to the free energy@19#.

On the other hand, the identification of peaks also con-
firms the goodness of the Gaussian parametrization for the

5700 53C. RASCÓN, L. MEDEROS, AND G. NAVASCUÉS



one-particle density. Moreover, it suggests that from the
theoretical minimization process of the free energy one can
obtain information on the crystal average distribution func-
tion g̃(r ). ~A work along this line is in progress.! Here, we
explore the other way: from MC data@the parameterW in
~21!# we obtain the corresponding Gaussian width parameter
a of the ‘‘MC Gaussian one-particle density.’’ Then, we are
able to compute the MC ideal contribution to the free energy,
Fid , throughout the exact functional form Eq.~2!. The MC
free energy excess is now immediately obtained and so are
the ideal and the excess contributions of the pressure and the
compressibility. Notice that the excellent fitting of Choi
et al. allows us to evaluate analytically all these thermody-
namics properties over the density range up to almost close
packing. In Fig. 1, fora, we show some of these results in
comparison with those inferred by Dentonet al. @2# from
Young and Alder@20# simulation data. The fair agreement is
a sign of the consistency of the different MC data. In any
case, the treatment of MC data we have followed is much
more powerful as it gives a continuous expression of the
thermodynamic variables, as a function of density, up to al-
most close packing.

IV. RESULTS AND DISCUSSION

Figure 1 shows the logarithm of the Gaussian parametera
inferred by us from Choiet al.MC simulations@17# and by
Denton et al. @2# from Young and Alder MC simulations
@20#. The predictions of TF, MWDA, and GELA are also
displayed.~MWDA data in all figures are those obtained by
Tejeroet al.which we assume free of possible convergence
problems.! TF predicts a systematic overestimation of the
Gaussian width parametera but always in fair agreement
with simulation results. GELA predictions are better at low

densities as it was already known. At high densities both TF
and GELA predict close values fora. The MWDA gives the
best predictions except at the lowest densities. Figure 2
shows the equation of state predicted by TF, MWDA, and
GELA together with simulation results. At low densities~see
also Fig. 3!, the GELA pressure is slightly above the simu-
lation pressure while TF and MWDA pressures have lower
values. All of them improve their agreement with simulation
as the pressure increases. At the highest density where we
have performed calculations, the TF pressure differs from the
simulation one in less than 0.3%. In Fig. 4, we show the two
contributions to the pressure, ideal and excess, obtained from
TF, MWDA, and GELA in comparison with those inferred

FIG. 1. Logarithm of the Gaussian width parametera vs pack-
ing fractionh. Solid curve inferred, in this paper, from simulation
data of Choiet al. Solid squares inferred by Dentonet al. from
simulation data of Young and Alder. The dashed curve is the TF
prediction. Solid triangles and open triangles are the results from
GELA and MWDA, respectively, obtained by Tejeroet al.

FIG. 2. Logarithm of the equation of stateP/rkBT vs packing
fractionh. Curves and symbols as in Fig. 1.

FIG. 3. Equation of stateP/rkBT vs packing fractionh at low
densities. Curves and symbols as in Fig. 1.
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from simulation data. TF and GELA show an excellent
agreement with simulation results. The MWDA results are
also quite good. Notice that the good theoretical predictions
for the a parameter~Fig. 1! will necessarily mean compa-
rable good predictions for the ideal pressure~Fig. 4! because
Eq. ~2! is exact. However, due to the functional approxima-
tions proposed for the excess free energy~or for the total free
energy! the theoretical excess pressure~or the total pressure!
must be also compared with simulation data. This is even
more important at high densities where a significant error in
the excess contribution would not have appreciable effects
on the total pressure. Figure 5 shows the compressibility pre-
dicted by TF together with that obtained from simulation.
We have used the standard cubic spline treatment of the pres-

sure data to obtain the compressibility via Eq.~13!. Once
more, the agreement is quite good. We do not have accurate
enough data of GELA and MWDA to obtain the compress-
ibility properly. It exhibits unphysical oscillations which,
most probably, are due to roundoff effects of pressure data.
For completeness, we present in inset of Fig. 5 the inverse of
the ideal and excess compressibilities. The agreement with
simulation is good.

The splitting of the pressure into those parts is quite con-
venient for all the above discussion. However, we are in-
clined to think that there is no physical meaning in the ideal
and the excess pressures, such as they are defined by Eqs.
~10! and ~11!.

V. CONCLUSIONS

In this paper, we have presented two different contribu-
tions. One concerns the method used to handle MC data of
the g̃(r ) and the other concerns the accuracy of the equation
of state computed with functional approaches.

We have proposed a method, using MC data ofg̃(r ), to
determine the rms displacement of a particle from its equi-
librium lattice site@i.e., the parametera if r~r ! is approxi-
mated by a sum of Gaussians#. This should work perfectly
for peaks ofg̃(r ) at distances where the two-particle distri-
bution function is already given by the productr~r !r~r 8!. In
practice, it is possible to deduce already the rms displace-
ment ~or parametera! from the second peak ofg̃(r ). This
procedure should be consistent with a direct determination of
the rms displacement from MC configurations. Assuming the
Gaussian parametrization forr~r !, an accurate fitting ofg̃(r )
allows us to determine the parametera as a function of the
density. From this, the ideal pressure is straightforwardly
obtained via the exact expression~2!. From the total and the
ideal pressures, the excess pressure follows immediately.

As a consequence of the analytical fitting of MC data
for g̃(r ), it can be deduced that beyond the nearest neighbors
the two-particle correlation function is practically given by
the productr~r !r~r 8!, i.e.,g~r ,r 8!'1. We are not aware that
this quite interesting and important result was previously
mentioned by other authors.

The other aim of this paper has been to show the excellent
behavior of the equation of state of the fcc HS solid com-
puted with functional approaches. They agree with simula-
tion results up to almost close packing. This remarkable be-
havior is extended to the contributions to the pressure,
namely, the ideal and the excess pressures, and to the com-
pressibility and their ideal and excess parts. They all are in
notable agreement with simulation up to almost close pack-
ing.

Finally, we want to remark that functional approaches
provide a reliable reference HS system for perturbation theo-
ries, especially at high densities. This makes them particu-
larly suitable for describing the solid-solid isostructural tran-
sition of simple systems with extremely short-ranged
attractive potentials@6#. We have applied the PWDA@18,19#
mentioned above to an attractive square well@21# and to HS
plus Yukawa attractive tail@22#. Precisely, the PWDA is
based, among other things, on two of the points explored
here: the goodness of the TF, even at high densities, for
describing HS and the accuracy of the productr~r !r~r 8! for

FIG. 4. Equation of stateP/rkBT vs packing fractionh. Curves
and symbols as in Fig. 1.

FIG. 5. rkBTxT vs packing fractionh. Inset: 1/rkBTxT vs
packing fractionh. Curves as in Fig. 1.

5702 53C. RASCÓN, L. MEDEROS, AND G. NAVASCUÉS



describing the correlation between particles beyond nearest
neighbors. Note that after Tejeroet al.discussion on the nu-
merical problems at high densities of the MWDA, results
based on this functional approach must be seem with some
caution@23#.
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